11

Bescon Valve (BALEM 441)

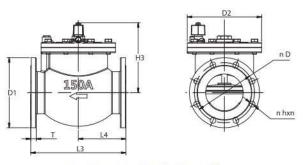
Special Features

- Can be operated both mechanically and electrically.
- · Easy installation, handling and maintenance.
- Piston type valve actuated by differential pressure.
- Valve opening can be set on site considering working condition.
- Suitable for high temperature and high pressure.
- Durable and long life span.

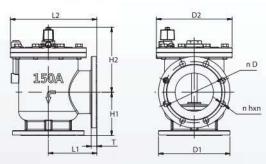
Bescon Valve (Balem 441) is a float level control valve, which can be operated by electrically using a solenoid valve and/or mechanically using a pilot float valve. When the valve is used with dual functions, the valve ensures more safe and perfect performance in controlling the water level in the reservoir. Even in case of the power failure, the valve works properly ensuring you a safe running. The valve has piston type actuator operated by differential pressure with internal control piping. The valve is made of stainless steel, which ensures more safe and hygienic conditions in the system.

Patents • Patented to Kore	Pa	itents	 Pat 	ented	to I	Korea
----------------------------	----	--------	-------------------------	-------	------	-------

[Applications]

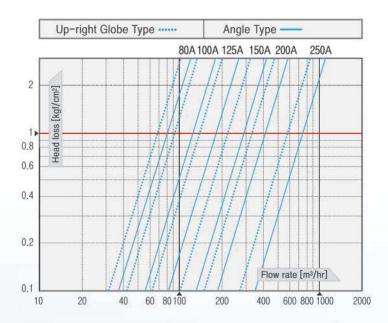

- Underground / roof top water reservoir level control valve.
- Substitution for High and Low level control electrodes in water reservoir.
- · Various types of oil tank float control valves.

Model	Size	Materials	Pattern
441	80-250A	STS 304	A -Angle G -Up-right Globe

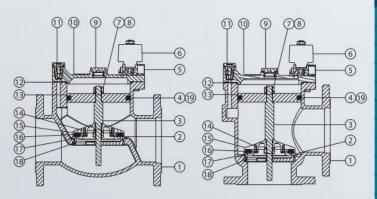

Specifications	Bescon Valve (BALEM 441)							
Model No.	441-080	441-100	441-125	441-150	441-200	441-250		
Size	80A(3")	100A(4")	125A(5")	150A(6")	200A(8")	250A(10")		
Operating Pressure	0.05~0.98 MPa (0.5~10kgf/cm²)							
Testing Pressure	1,72 MPa (17.5kgf/cm²)							
Pilot Valve	Female threaded:KSPT ½ / (Optional:NPT)							
FIIOL Valve	Solenoid Valve : AC 220V 60Hz, Normal Closed							
Media	Water, Oil - Temperature : 0℃ ~ 80℃							

page,1405-011

Dimensions



▲ Up-right Globe Type

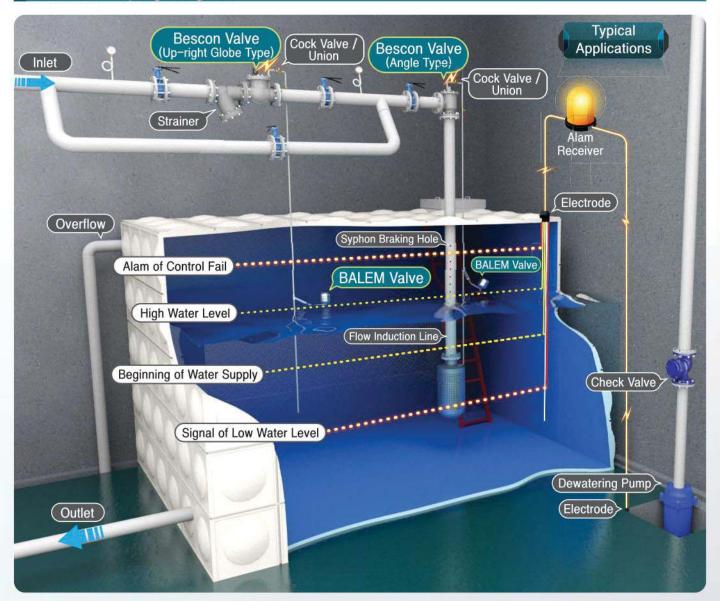

▲ Angle Type

Flow Chart

SIZE(mm)	D1	D2	T	H1	H2	НЗ	L1	L2	L3	L4	D(Ø)	hXn(Ø)
80A	185	194	16	115	223	235	130	229	270	136	160	19X8
100A	210	213	16	125	236	250	140	249	290	144	175	19X8
125A	250	257	18	150	250	275	170	299	350	175	210	23X8
150A	280	297	20	170	280	305	190	339	380	190	240	23X8
200A	330	375	22	205	354	392	235	392	480	240	290	23X12
250A	400	456	24	250	442	482	280	508	570	285	335	25X12

Materials

[Solenoid Control Valve Specifications]


· Voltage: 220 AC 50Hz~60Hz

• Coil Insulation : Coil Insulation Class B(Standard) H(Optional)

· Power Supply: 8 Watts/50Hz, 6.5 Watts/60Hz

		Materials					
No.	Components	Standard	Optional				
1	Body	Body SSC 13					
2	Seat Ring	SSC	13				
3	Shaft	STS	304				
4	Quad-Ring	Silicone	Rubber				
5	Solenoid Block	SSC	C 13				
6	Solenoid Coil	-	+3				
7	Nut	STS 304					
8	Spring Washer	STS 304					
9	Plug	SSC 13					
10	Cover	SSC 13					
11	Needle Assembly	STS 304					
12	O-Ring	N.B.R					
13	Piston	STS 304					
14	Bolt	STS 304					
15	Disc	SSC 13					
16	Disc Seal	N.B.R					
17	Disc Washer	STS 304					
18	Set Screw	STS	304				
19	Piston Ring	P.T.F.E					

Standard Piping Diagram

• A syphon braking hole must be provided to prevent water hammering when opening/closing the valve.

Installation Tips!

- 1. Refer to the standard piping diagram when installing the valve.
- 2. Prior to installing, please flush the pipeline to remove any contaminants inside.
- 3. It is strongly recommended to use a pilot valve made by Balem to secure a perfect operation of the valve.
- An alarm receiver should be installed in the control room to prevent an overflow caused by any other reason except our valve.
- 5. A strainer should be installed ahead of the valve, and opening/closing speed of the valve can be adjusted by speed controller during the trial run observing the field conditions.
- 6. If the valve is used on high pressure, install a pressure reducing valve and automatic air vent valve to prevent water hammering and noise.
- 7. Prior to installing a solenoid, be sure that the electric power supply is compatible with the solenoid requirement described on the nameplate.
- 8. If a solenoid valve does not work properly, turn the manual opening/closing screw counterclockwise 3 times in order to control the valve manually. After fixing the problem, turn the screw clockwise 3 times.
- 9. Install a ball valve and union joint near the valve on the pilot line for easy checks.
- 10. The flow induction line should be corrosion resistant and a syphon braking hole (min. Ø8.0 mm in diameter) must be provided to prevent siphonage.

page,1405-013